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On slow oscillations in coupled wells
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The eigenvalue problem for slow oscillations of a liquid in a set of N cylindrical
wells that are bounded above by free surfaces and below by a common, semi-infinite
reservoir is formulated on the assumption that the depth of the wells is large compared
with their width, so that the lowest mode in each well, for which the fluid moves as
a rigid body, dominates the higher modes. Detailed results are presented for a single
well, a pair of identical circular wells, and linear and equilateral triplets. Comparison
with Molin’s (2001) result for a rectangular well suggests that the present result for
a circular well should provide a good approximation for the Helmholtz mode in any
well of the same cross-sectional area and moderate aspect ratio.

1. Introduction
I consider here the slow oscillations (ω2 � g/a, where a is a characteristic radius)

of a liquid in a set of N cylindrical wells of depth hn and cross-section Sn ≡ πa2
n that

are bounded above by free surfaces and below by a common, semi-infinite reservoir.
The results may be of practical interest in connection with artesian wells or marine
operations (cf. Molin 2001). The problem for a single well resembles that for a
bottomless harbour (Garrett 1970). The problem for twin wells goes back to Newton
(1686), who showed that the natural period of oscillations in a U-tube is equal to
that of a simple pendulum with a length equal to half the length of the liquid in the
U-tube.

Let a be a representative radius and h a representative depth. The assumption
ω2 � g/a, which requires h� a, permits the motion in each well to be described by
the dominant mode, for which the fluid moves as a rigid body. The neglect of the
higher modes† prevents the local matching, in the mouth of the well, of the solution
in the well to that in the reservoir, but closure may be effected, and the eigenvalues
(κ ≡ ω2/g) approximated, by matching the total impulse (cf. Lamb 1932, § 196).

I formulate the N-well problem in § 2 and develop the solution for a single well
in § 3. Comparison with Molin’s (2001) result for a rectangular well suggests that
the present result for a circular well should provide a good approximation for the
Helmholtz mode in any well of the same cross-sectional area and moderate aspect
ratio.

In § 4, I consider a pair of identical circular wells. There then are two normal
modes. In the slower of these modes, the motion is symmetric with respect to
the mid-plane, and the solution in the reservoir is source-like. In the faster mode,
the motion is antisymmetric with respect to the mid-plane, and the solution in the

† The higher modes for a circular well correspond to the positive zeros of J ′m(kmna), while the
dominant mode corresponds to m = 0 and k00 = 0.
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reservoir is dipole-like. The symmetric mode resembles that for a single well and may
be described by the modifier Helmholtz. The antisymmetric mode resembles that for
a U-tube and may be described by the modifier sloshing.

In § 5, I consider a linear array of N identical wells and display explicit results
for N = 3. In § 6, I consider N identical wells at the vertices of an N-sided regular
polygon and display explicit results for N = 3.

2. The boundary-value problem
Consider a set of N wells (n = 1, 2, . . . , N) of cross-section Sn ≡ πa2

n and depth hn
(mouths at z = 0, free surfaces at z = hn). The solution of Laplace’s equation for the
velocity potential φn in the nth well, subject to the boundary conditions

∂zφn = wn (z = 0), ∂zφn = (ω2/g)φn (z = hn), (2.1a, b)

is given by

φn = wn(z − hn + κ−1) (0 6 z 6 hn), κ ≡ ω2/g, (2.2a, b)

where wn is the unknown velocity in the nth well and is implicitly simple harmonic
with frequency ω. The corresponding solution in the reservoir, subject to (2.1a) and
a null condition for z ↓ −∞, is given by

φ(r) =

N∑
n=1

φn(r) (z < 0), φn(r) =
wn

2π

∫∫
Sn

dS(ρn)

|r − ρn| . (2.3a, b)

Equating the total impulse,
∫∫
φ dS (density omitted), given by (2.2a) to that given

by (2.3a) in the mth mouth, we obtain the N linear, homogeneous equations

N∑
n=1

[δmn(hn − κ−1) + Amn]anwn = 0 (m = 1, . . . , N), (2.4)

where

Amn ≡ 1

2π(SmSn)1/2

∫∫
dS(rn)

∫∫
dS(ρm)

|rn − ρm| = Anm, (2.5)

δmn is the Kronecker delta, and an ≡ (Sn/π)1/2.
For a circular well of radius an

Ann ≡ An = 8an/3π (2.6)

(cf. Rayleigh 1896, § 3.12; (2.6) is an upper bound for a non-circular cross-section
(Pölya & Szegö 1951)).

If the inter-axial distance bmn � an, (2.5) may, but need not, be approximated by

Amn ' aman/2bmn (m 6= n). (2.7)

3. Single well
For a single circular well of radius a and depth h, (2.2a) reduces to

φ = w(z − h+ κ−1) (0 < r < a, 0 < z < h), (3.1)

(2.3b) exhibits the source-like asymptotic behaviour

φ ∼ 1
2
a2wR−1, R ≡ (x2 + y2 + z2)1/2 →∞, (3.2a, b)
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and (2.4) implies

κ =
ω2

g
=

1

h+ αa
, α ≡ 8

3π
= 0.849. (3.3a, b)

This compares with Molin’s result (28) for a rectangular pool with sides b and l,
which we place in the form (3.3) with a = (bl/π)1/2, the equivalent radius of the
rectangle. Molin obtains

√
πα =

(
b

l

)1/2

sinh−1 l

b
+

(
l

b

)1/2

sinh−1 b

l
+

1

3

[(
b

l

)3/2

+

(
l

b

)3/2

−
(
b

l
+
l

b

)3/2
]
,

(3.4)

which has a maximum of 0.839
√
π for b/l = 1, is symmetric under b/l → l/b, and

is within 4% of (3.3b) for 1
2
< b/l < 2 or 11% for 1

4
< b/l < 4. This suggests that

(3.3) should be a good approximation for any well of cross-sectional area πa2 and
moderate aspect ratio.

4. Twin wells
Now suppose that N = 2 and the wells are identical circular cylinders of radius a,

depth h, and axes at x = ± 1
2
b (b > 2a). Then

A11 = A22 ≡ A =
8a

3π
, A12 = A21 ≡ B, (4.1a, b)

where B is given by (2.5) and admits the expansion

B =
a2

2b

[
1 +

1

4

a2

b2
+ O

(
a4

b4

)]
. (4.2)

Substituting (4.1a, b) and N = 2 into (2.4), we obtain

(h− κ−1 + A)w1 + Bw2 = 0, Bw1 + (h− κ−1 + A)w2 = 0. (4.3a, b)

The Helmholtz and sloshing modes are given by

1/κ1 = h+ A+ B, w1 = w2 = w, (4.4a, b)

and

1/κ2 = h+ A− B, w1 = −w2 = w. (4.5a, b)

The Helmholtz mode exhibits the source-like asymptotic behaviour (cf. (3.2))

φ1 + φ2 ∼ wa2

2

(
1

r1
+

1

r2

)
∼ wa2

R
(z < 0, R →∞), (4.6)

where

R ≡ (x2 + y2 + z2)1/2. (4.7)

The sloshing mode exhibits the dipole-like asymptotic behaviour

φ1 + φ2 ∼ a2w

2

(
1

r1
− 1

r2

)
∼ a2bwx

2R3
(z < 0, R →∞). (4.8)

The equivalent-pendulum length for the sloshing mode, h+A−B, differs from that
for Newton’s U tube (half the total length of the fluid in the tubes) in the corrections
for the open end and mutual coupling.
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5. Linear array
Now suppose that the wells form a rectilinear array of equally spaced, identical

circular cylinders. Then Ann = A is given by (2.6),

Amn ≡ B|m−n| (m 6= n) (5.1)

depends only on |m− n|, rather than separately on m and n, and (2.4) reduces to the
Toeplitz system (see Golub & Van Loan 1996)

N∑
n=1

[δmn(h+ A− κ−1) + (1− δmn)B|m−n|]wn = 0. (5.2)

Letting N = 3, we obtain the matrix equation θ B1 B2

B1 θ B1

B2 B1 θ

 {wn} = 0, θ ≡ h+ A− κ−1. (5.3a, b)

The corresponding determinantal equation is

∆(θ) = (θ − B2)(θ
2 + B2θ − 2B2

1) = 0. (5.4)

The root θ = B2 yields the sloshing mode,

κ−1 = h+ A− B2, [wn] = [1, 0,−1]w1, (5.5a, b)

which, since the middle well is quiescent, is equivalent to (4.5). The remaining roots,
for which θ = θ± = − 1

2
B2 ± (2B2

1 + 1
4
B2

2), yield the Helmholtz modes

κ−1 = h+ A− θ±, [wn] =
3

2

(
1− 2B1

θ±

)−1 [
1,−2B1

θ±
, 1

]
w̄, (5.6a, b)

where w̄ is the mean displacement. The approximation (2.7) yields

B1 ' a2

2b
, B2 =

a2

b
, θ± = B1(−1±√3). (5.7a–c)

6. Polygonal configurations
The Toeplitz system (5.2) also holds for a set of N circular wells of radius a and

depth h at the vertices of an N-sided regular polygon of side b, but the inter-axial
spacing is given by, and B|m−n| must be calculated for,

b sin[|m− n|(π/N)]

sin(π/N)
≡ b|m−n|. (6.1)

Letting N = 3, we obtain

b|m−n| = b, B|m−n| = B, (6.2a, b)

where B = A12 is given by (2.5), and (5.2) reduces to∣∣∣∣∣∣
θ B B
B θ B
B B θ

∣∣∣∣∣∣ [wn] = 0, (6.3)

where θ is defined by (5.3b). The corresponding determinantal equation is

∆(θ) = θ3 − 3B2θ + 2B3 = (θ − B)2(θ + 2B) = 0. (6.4)
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The Helmholtz mode corresponds to θ = −2B, for which

κ−1 = h+ A+ 2B, [wn] = [1, 1, 1]w̄. (6.5a, b)

The sloshing modes correspond to the double root θ = B, for which

κ−1 = h+ A− B, [wn] = [1, 0,−1]w1 + [0, 1,−1]w2. (6.6a, b)

We remark that the present triplet comprises one Helmholtz mode and two sloshing
modes, in contrast to the converse for the rectilinear triplet.

This work was supported in part by the Division of Ocean Sciences of the National
Science Foundation Grant OCE98-03204, and by the Office of Naval Research Grant
N00014-92-J-1171.

REFERENCES

Garrett, C. J. G. R. 1970 Bottomless harbours. J. Fluid Mech. 43, 433–449.

Golub, G. H. & Van Loan, C. F. 1996 Matrix Computations. Johns Hopkins University Press.

Lamb, H. 1932 Hydrodynamics. Cambridge University Press.

Molin, B. 2001 On the piston and sloshing modes in moonpools. J. Fluid Mech. 430, 27–50.

Newton, I. 1686/1946 Principia, Book II, Proposition XLIV, Theorem XXXV. Motte’s translation,
rev. F. Cajori. University of California Press.
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